
Towards a Mechanization of Standard ML in Beluga
using Harpoon

Marc-Antoine Ouimet Jacob Errington Brigitte Pientka
McGill University, Montreal, Canada

{marc-antoine.ouimet,jacob.errington}@mail.mcgill.ca bpientka@cs.mcgill.ca

The metatheory of Standard ML was formalized in LF and verified in Twelf by
Lee, Crary and Harper. We set out to repeat their meta-theoretic mechanization in
order to assess the practicality and robustness of Beluga, a programming and proof
environment with support for first-class contexts and simultaneous substitutions, using
Harpoon, an interactive proof environment acting as a more accessible frontend to
Beluga. We report on the progress made in translating the mechanization, and
present issues and missing features from Beluga and Harpoon that need to be
addressed before resuming work on the translation.

1 Introduction
The mechanization for the metatheory of Standard ML presented by Lee, Crary and
Harper in 2009 was the first of its kind as it formalized a full-fledged general purpose pro-
gramming language [9]. Indeed, Standard ML is a dialect of ML featuring higher-order
functions, algebraic datatypes, pattern matching, polymorphism, as well as a rich module
system. The mechanization spanned many years of research into providing a type-theoretic
definition of Standard ML [7], formalising its module system [6], and devising verification
techniques when dealing with dependent types and subkinding relations [2, 18, 20]. Other
programming languages, such as Java [8], C [11] and OCaml [12], have had subsets of their
features formalized, though not all without mishaps, which goes to show how difficult of a
task it is correctly and convincingly mechanize a programming language.

The mechanization of Standard ML was realised in Twelf [13], a meta-logical frame-
work for deductive systems based around the LF type theory [5]. Among the limitations
of Twelf are its lack of support for substitutions and reasoning explicitly with contextual
types, which makes proof development less straightforward. Beluga [16] took inspiration
on Twelf and augmented it with support for first-class contexts and simultaneous substitu-
tions, among other things. Since Twelf and Beluga share the same LF core, it followed
that the mechanization of Standard ML could be translated into Beluga to see how
it could be improved upon with a language supporting first-class contexts. This was also
the opportunity to employ Harpoon [4], an interactive command-driven proof environment

1

built on top of Beluga, to evaluate the robustness and practicality of both Beluga and
Harpoon.

In this paper, we report on missing features and issues with Beluga and Harpoon
that were encountered in the process of translating the mechanization of Standard ML.
These range from issues arising from Beluga’s lack of support for existentially-quantified
metavariables to stringent context subsumption errors that prevent certain programs to be
checked, as well as missing support for complete inductive reasoning. Additionally, incon-
sistencies in translating from Harpoon proof scripts to Beluga programs revealed issues
with the totality checking procedure that allow for incorrect proofs to be included in the
translated mechanization.

2 Overview of the mechanization
This section presents the key components and structure of the original mechanization and
reports on the progress made in translating it to Beluga.

2.1 Structure of the mechanization
Lee, Crary and Harper’s mechanization of Standard ML [9] encompasses many research
efforts with the formalization of dependent types and modularity, and the implementation
of the TILT compiler. As such, the many languages formalized therein have evolved greatly
from when they were first presented. It employs a core calculus approach, whereby well-
behaved lambda calculi with sufficient expressive power are elaborated to the abstract syntax
of the actual language. This mechanization may be split into three components:

1. The singleton type calculus [3, 18, 20], referred to as singleton metatheory.

2. An explicitly-typed λ-calculus, referred to as internal language [9], which includes type
constructors, dependent types, signatures, stores, terms and modules.

3. An elaboration and proof of correctness from the internal language to the abstract
syntax of Standard ML [10], referred to as external language [9].

Type preservation for terms of the internal language requires proofs that some type
constructors for simple types are injective. These include product, sum, arrow, recursive
and labelled types. In the presence of dependent kinds and a type subsumption rule, these
injectivity lemmas are not trivial to prove. As such, the singleton metatheory, with its
extensional equivalence relations, was proven to be consistent with those types of the internal
language in order to prove their injectivity. Stone and Harper [20] proposed an algorithm

2

involving logical relations for proving soundness and correctness of the singleton kind calculus,
but the original mechanization instead features a syntactic proof [3] due to limitations of
Twelf. Using Beluga’s inductive and stratified types as in the case studies on logical
relations [1], it should be possible to mechanize the algorithm they had found initially, which
may shorten the mechanization.

The internal language is the core calculus of the mechanization [9]. Progress for terms
and modules are proven by reducing them first to their canonical forms. Similarly, inversions
are proven by reducing the kinds of constructors for terms and modules to their most specific
kind [19]. The syntax and semantics of the internal language appear in appendix A, and
figure 1 summarizes its properties and their dependencies in proving its type safety.

The internal language is then finally elaborated to assert its regularity against the ab-
stract syntax of Standard ML. This part of the mechanization follows closely the formal
definition of Standard ML [9] and provides a benchmark for LF parsers and type recon-
structors. An adaptation of this elaboration in Beluga would follow closely that of the
original mechanization.

Singleton Metatheory

Elaboration

Internal Language

Preservation ProgressDeterminism

InversionMonotonicity Injectivity Canonical forms

Validity Principal kinds Consistency

Singleton kindsFunctionality Static inversion

Figure 1: Overview dependency graph of properties and theorems involved in proving the
type safety of the internal language. Type preservation requires the property that stores
evolve monotonically, that constructors for simple types are injective, and that constructors
for terms and modules are invertible. erm and module constructors are invertible. These
inversion lemmas themselves require notions of equivalence for well-formed kinds and type
constructors as well as module signatures. Functionality lemmas assert that the equivalence
for these type families are maintained when substituting equivalent objects. Once these
properties are established, the internal language may be elaborated into the abstract syntax
of Standard ML. Notable lemmas from the internal language are stated in appendix B.

3

2.2 Translation progress
We set out to translate the proof of type safety of the internal language using a top-down
approach. This involved among other things translating the validity, or well-formedness, of
equivalence relations for kinds, type constructors and signatures, as well as the validity of
subkinding. Functionality lemmas on which these depend have not been translated since
the issue with dependently-kinded constructors and explicit contexts arose [9], whereby an
invariant on the position of a contextual assumption cannot be maintained using hypothetical
judgments when dealing with dependent types. We have yet to see how to adapt the heavy
encoding technique of explicit contexts [2] in Beluga’s notion of inductive types to yield
smaller programs.

Injectivity lemmas for type constructors are required for type preservation of terms in
the internal language. Their proofs as proposed in the original mechanization [9] make use
of the singleton metatheory for its unary and binary equivalence algorithms [20]. These
have yet to be translated since they depend on completeness theorems of other calculi whose
translations from one to the other have not been added. However, focus has been given to
translating the consistency theorems between the singleton metatheory and the kinds and
type constructors of the internal language.

The translated mechanization need not feature simple substitution nor equality lemmas
as Beluga features simple and simultaneous substitutions. LF constants for variable terms,
modules and type constructors were removed as these are handled using contextual types.
Empty LF types exclusively used for contextual assumptions were also removed. Specifically,
in the internal language, the assumption judgments that a term has a given type constructor,
and that a module has a given signature had their usages replaced with higher-order typing
judgements. Indeed, these assumptive judgements were not constrained to specific store types
in order to satisfy their weakening property with respect to heap and tag types [9]. Since
typing judgments for terms and modules include a store type explicitly, then we universally
quantify over the store type using higher-order contextual types as illustrated in figure 2. A
substitution lemma as found in the original mechanization is then required to satisfy these
hypothetical judgments with a type judgment bound to a specific store type.

3 Verification with Beluga
This section presents issues with Beluga that need to be addressed in order to enhance, fix
and verify the translated mechanization.

4

% tm−assm : term -> con -> type.
% tm−of : sttp -> term -> con -> type.
tm−of/lam :
cn−of T1 t ->
({x : term} tm−assm x T1 -> tm−of F (E x) T2) ->
tm−of F (tm/lam T1 ([x] E x)) (arrow T1 T2)

tm−of/lam' :
cn−of T1 t ->
({x : term} {u : {F' : sttp} tm−of F' x T1} tm−of F (E x) T2) ->
tm−of F (tm/lam T1 (\x. E x)) (arrow T1 T2)

Figure 2: Typing judgment for abstraction of terms in the internal language. The construc-
tor tm−of/lam features an empty LF constant tm−assm which is not constrained to a store
type, and the constructor tm−of/lam' adapts this hypothesis judgment with a Π-type and
reusing the tm−of type.

3.1 Mode information
This subsection highlights how Beluga would benefit from having a feature analogous to
Twelf’s mode declaration for specifying existentially-quantified metavariables.

Beluga currently does not support Σ-types as they pose implementation problems. In-
stead, the documentation proposes that theorems involving existential quantification be
skolemised using Π-types and an auxiliary LF type with a unique constructor [17]. Skolemi-
sation reduces the readability of theorem statements and subsequent subgoals in Harpoon
sessions, and would pose problems in efforts to mechanize the translation of Beluga pro-
grams into human-readable proofs as it erases the existential quantification intent. An
example of such a workaround is given in figure 3.

Γ ⊢ C : con can-map
Γ ⊢ ΣM:eterm.map C M : type

LF can−map/e : con -> type = can−map/i : {M : eterm} map C M -> can−map/e C;
proof can−map : (g : can−map−ctx) {C : [g ⊢ con]} [g ⊢ can−map/e C] = % ...

Figure 3: Derivation involving existential quantification, and equivalent theorem statement
in Beluga using an auxiliary LF type and constructor. After invoking can−map, a metavari-
able M : eterm and the judgement map C M are obtained by inversion on the can−map/e
judgment.

5

Twelf supports the statement of ∀∃-metatheorems with multiple outputs through modes
[14]. This allows for multiple judgments to be proved simultaneously, which is convenient
when their proof structures are similar, or depend on each other. Subsequent uses of such
theorems in other proofs may introduce metavariables that go unused. However, grouping of
similar theorems with this mode declaration prevents the clutter of having theorem names
for each output.

Nevertheless, there are theorems that require multiple outputs. These involve existentially-
quantified metavariables that appear in more than one output judgment. Attempting to
separate these outputs results in weaker and non-equivalent statements. Indeed, since these
are invoked separately, the output metavariables that were existentially-quantified are not
necessarily equal. Hence, such theorems’ outputs need to be tuples that are destructured
upon invocation. An example of a theorem requiring multiple outputs is given in figure 4.

Γ ⊢ tm-of F (tm/pair E1 E2) T : type inversion-tm/pair

Γ ⊢ ΣT1:con.ΣT2:con.

 cn-equiv (prod T1 T2) T t : type
tm-of F E1 T1 : type
tm-of F E2 T2 : type

LF inversion−tm/pair/e : sttp -> term -> term -> con -> type =
inversion−tm/pair/i : {T1 : con} {T2 : con} cn−equiv (prod T1 T2) T t ->
tm−of F E1 T1 -> tm−of F E2 T2 -> inversion−tm/pair/e F E1 E2 T;

proof inversion−tm/pair : [⊢ tm−of F (tm/pair E1 E2) T] ->
[⊢ inversion−tm/pair/e F E1 E2 T] = % ...

Figure 4: Derivation involving existential quantification and multiple outputs, and equiva-
lent theorem statement in Beluga using skolemisation. With this formulation, destructur-
ing of what would be the output tuple is obtained by inversion on the inversion−tm/pair/e
judgment.

3.2 Context schemas overhaul
Assumptions in Twelf require the declaration of regular worlds to ensure proper type infer-
ence when dealing with hypothetical judgments arising from LF constructors [14]. Beluga
adopts a similar solution where it uses its notion of context schemas to enable the specifica-
tion of its first-class contexts. However, this feature currently lacks some of the functionalities
of regular world declarations.

Beluga does not allow the definition of schemas with alternating assumptions by re-
ferring to pre-existing schemas, which affects the maintainability of mechanizations involv-

6

ing multiple arrangements of schemas. In other words, schema definitions cannot refer to
previous schemas to append or prepend them to others to form alternating assumptions.
Implementing this feature would allow for context schemas to not feature duplicate schema
specifications. Figure 5 illustrates how this feature may be implemented by overriding the
plus operator for defining alternating assumptions.

schema conblock = block (a : con);
schema termblock = block (x : term);
schema modblock = block (a : con, m : module', dfst : md−fst m a);
schema resolve−ctx = conblock + termblock + modblock;
schema resolve−ctx' = conblock + block (x : term) + modblock;

Figure 5: Proposed change to the alternating schema operator. Schemas resolve−ctx and
resolve−ctx' are equivalent.

Beluga does not strictly ensure that all indeterminate variables in schema declarations
are present in the meta-context when instantiating open assumption blocks from context
schemas that have such variables. That is, the metavariables from the some clause of a context
schema declaration are not all ensured to exist when instantiating the assumption. In the
mechanization, this has led to some theorems invoking lemmas requiring the well-formedness
of kinds to disregard the well-formedness judgment entirely. Specifically, referring to the
context schemas illustrated in figure 6, this has led to the erroneous invocation of lemmas
in the context conbind−reg while only meeting the requirements from conbind.

schema conbind = some [K : kind] block (a : con, d : cn−of a K);
schema conbind−reg = some [K : kind, wf : kd−wf K]
block (a : con, da : cn−of a K);

Figure 6: Schema declarations that bind type constructors to kinds. Schema conbind−reg
should be usable in place of conbind since the former is weaker as the latter does not require
the kind to be well-formed. The converse does not hold.

Beluga does not treat context schemas as lattices. Context subsumption ensures that
if a schema Γ is a prefix of a schema Γ′, then Γ′ can be used in place of Γ. Although this is al-
ready featured in Beluga with context schemas consisting of only closed assumption blocks,
it is not the case for open assumption blocks. Figure 7 illustrates an unsupported context
subsumption involving indeterminate variables that are expected to agree with each other.
Therein, the judgments required by the some clause to make an assumption in unmap−bind
are stricter but include those required for assumptions made in conbind−reg. To circumvent

7

this in the translation, stronger context schemas were prepended to those with which they
did not agree. This has led to more general theorem statements which may not be provable
as bound variables implicit to the stronger schemas may not feature required judgments.

schema conbind−reg = some [K : kind, wf : kd−wf K]
block (a : con, da : cn−of a K);

schema unmap−bind = some [K : kind, wf : kd−wf K, B : etp, map : tunmap B K]
block (a : con, da : cn−of a K, x : eterm, dx : eof x B, xt : unmap x a);

Figure 7: Context schema binding well-formed kinds to type constructors, and context
schema mapping types from the singleton metatheory to kinds in the internal language.
unmap−bind should be usable in place of conbind−reg since the latter is weaker and its
assumption requirements are included in the former.

Beluga attempts to generate all possible valid appeals to the induction hypothesis
in its termination checking algorithm for recursive programs. However, it does not take
into account all admissible orderings of judgments in block assumptions and contexts. Any
topological ordering of the dependency graph of judgments in these objects should be admis-
sible. For instance, figure 8 illustrates different assumption blocks of topologically-ordered
judgments which are expected to agree with a declared context schema. These topological
orderings should also apply when appealing to an induction hypothesis, as illustrated in
figures 9 and 10.

3.3 Complete induction
Totality checking in Beluga does not support specifying that the output of a lemma is
non-inflationary, which prevents it from being used recursively in other programs. Twelf
supports this using its reduction declaration feature [14]. In the original mechanization, these
reduction declarations are used among other things to verify that the outputs of respective
equality lemmas are of the same order as that of their inputs. However, these lemmas may
be inlined in Beluga by inversion on each of the LF constructors for equality types. More
interestingly, the proposed proofs for certain type constructor inversion theorems make use
of the reduction declaration in one of their invoked lemmas to work around the subsumption
relation on type constructors. The reduction declaration then obviates the need to inline
the invoked lemma, whose proof is more intricate and whose duplication would affect the
maintainability and readability of the mechanization. This feature may be worth implement-
ing in Beluga as it plays a role in proving canonical form lemmas for modules later in the
mechanization. For this, the current totality checking algorithm may need to be revisited to

8

schema unmap−bind =
some [K : kind, wf : kd−wf K,

B : etp, map : tunmap B K]
block (a : con, da : cn−of a K,

x : eterm, dx : eof x B,
xt : unmap x a);

����� �����	

������ � �������� � �

�����
�� � �

�

block (a : con, da : cn−of a K, x : eterm, dx : eof x B, xt : unmap x a);
block (x : eterm, dx : eof x B, a : con, da : cn−of a K, xt : unmap x a);
block (a : con, x : eterm, xt : unmap x a, da : cn−of a K, dx : eof x B);

Figure 8: Context schema declaration, dependency graph of the assumption judgments,
and list of equivalent assumption blocks with different topological orderings. The node ∆ in
the dependency graph stands for the indeterminate variables from the some clause on which
the assumption judgments depend, namely K : kind and B : etp. Each of the listed blocks
is expected to agree with unmap−bind. Since the judgments in ∆ are expected to be in the
meta-context upon instantiation of the assumption block, they should already be present
in some topological ordering, and so the orderings of the judgments in the some and block
clauses are independent.

schema termbind = some [T : con] block (x : term, u : {F' : sttp} tm−of F' x T);
proof substitution−tm−tm : (g : termbind)
[g, u : {F' : sttp} tm−of F' E1[..] T1[..] ⊢ tm−of F[..] E2[..] T2[..]] ->
[g ⊢ tm−of F E1 T1] -> [g ⊢ tm−of F E2 T2] = % ...

% Meta−context: {intros <- split x1 (case tm−of/try)}
D2 : (g, u : {F' : sttp} tm−of F' (E[..]) (T[..]),

x : term, dx : {F' : sttp} tm−of F' x tagged ⊢
tm−of (F[..]) (E1[.., x]) (T1[..]))

D : (g ⊢ tm−of F E T)
% Harpoon command prompt:
by substitution−tm−tm [_, b : block (x : term, u : {F' : sttp} tm−of F' x _),
u : {F' : sttp} tm−of F' _ _ ⊢ D2[.., u, b.x, b.dx]]
[_, b ⊢ D[..]] as D2' unboxed

Figure 9: Unsupported exchange of contextual objects. The input Harpoon command
raises an error since it doesn’t find an equivalent induction hypothesis among those Beluga
generated.

9

schema can−map−ctx = block (x : eterm)
+ some [x : eterm] block (a : con, at : map a x);

LF can−map/e : con -> type = can−map/i : {M : eterm} map C M -> can−map/e C;
proof can−map : (g : can−map−ctx) {C : [g ⊢ con]} [g ⊢ can−map/e C] = % ...
% Meta−context: {intros <- split [g ⊢ C] (case rec')}
C1 : (g, a : con, b : con ⊢ con)
% Harpoon command prompt:
invert can−map
[g, x : eterm, b1 : block (a : con, d : map a x),

y : eterm, b2 : block (b : con, e : map b y) ⊢ C1[.., b1.a, b2.b]]

Figure 10: Unsupported appeal to the induction hypothesis when dealing with a context of
alternating assumptions.

incorporate ideas from Twelf’s implementation for such verification of complete induction
[15].

4 Correctness of Harpoon sessions
This section presents issues with Harpoon that need to be addressed in order to verify the
translated mechanization.

4.1 Non-exhaustive case analyses
Manually editing Harpoon proof scripts reveals that they are not checked for non-exhaustive
case analyses. Although Harpoon’s tactics do produce exhaustive analyses, certain theo-
rems in the translation encountered internal errors when reconstructing cases for bound
variables implicit to a context variable with a schema of alternating assumptions, or one con-
taining higher-order assumptions. In order to continue with the mechanization, these cases
were left out to be completed at a later time. Should these cases remain omitted, the proof
should be invalid and fail type reconstruction upon completion of the other cases. Thus,
such proofs should explicitly state that they do not meet the totality checker’s requirements
using the trust keyword in place of the induction order.

10

4.2 Inconsistencies with Beluga programs
There are technical discrepancies between Harpoon’s and Beluga’s syntaxes for programs
which prevent Harpoon proof scripts to be correctly translated into Beluga programs.
Notably, Harpoon’s type erasure procedure is too aggressive and removes types from con-
textual objects in such a way that they may not have their types reconstructed by Beluga.
Further, Harpoon proof scripts involving context schemas with alternating assumptions
and higher-order contextual objects fail to be reconstructed. The error with respect to alter-
nating schemas may be due to having duplicate names for case analyses on variables bound
in the context. As for higher-order contextual objects, these raise ill-typed expression in the
computational context upon type reconstruction. Resolving these issues is critical for our
attempt at replacing the empty LF constructors introduced as assumption judgments from
the original mechanization with variables bound in the context of the proof.

Scoping of metavariables in Harpoon is inconsistent in-between sessions. Specifically,
variables which were not in scope unexpectedly become in scope after reconstructing a se-
rialized session. As such, sessions resumed using a different instance of Harpoon may
incorrectly refer explicitly to metavariables that are not in scope, in which case the trans-
lated Beluga programs fail to be verified. When out of scope metavariables appear as
contextual objects and variables, they usually need to be reconstructed by Beluga, hence
they are left out as holes instead of being incorrectly referred to explicitly. This is further
problematic as these holes can be silently misused.

4.3 Uninstantiated holes
Proofs completed in Harpoon and checked with Beluga may wrongly contain uninstan-
tiated metavariables. These arise when holes for variables or contextual objects that would
not appear in the translated Beluga program are not present in a subgoal’s meta-context
when completing a proof. Such holes should only be used where type-checking is possible,
and since these lie outside of the Harpoon’s session context by the end of the proof, they
avoid being checked. This may lead to users unknowingly misuse holes as this type of error
is not caught upon type reconstruction in subsequent Harpoon sessions. Figures 11 and 12
illustrate incorrect proofs that are not caught by the checking algorithm.

Resolving these sorts of issues with uninstantiated holes in proof scripts during a Har-
poon session would require commands to navigate through and edit proof trees. If navigation
through proof trees were to be implemented, then it would also be interesting to add the
ability to check proofs downwards from a given step. Since large mechanizations contain
proofs with multiple branches, partial verification from a given node in a proof would allow
users to detect errors before completing the entire proof.

Theorems may not have their proofs completed in Harpoon without having uninstan-

11

1 rec preservation−tm : [⊢ tm−of F E T] -> [⊢ store−of F ST F] ->
2 [⊢ step ST E ST' E'] -> [⊢ preservation−tm/e F E' T ST'] =
3 fn y => fn x => fn z =>
4 let [⊢ Dof] = y in
5 let [⊢ Dstof] = x in
6 case z of
7 % ...
8 | [⊢ step/lett2 Dvalue] =>
9 let [⊢ inversion−tm/lett/i _ Dof1 (\x. \u. Dof2)] =

10 inversion−tm/lett [⊢ Dof] in
11 let [⊢ Dof2'] = [⊢ Dof2[_, (\f. _)]] in
12 [⊢ preservation−tm/i _ Dof2' Dstof (extends/nil)];

Figure 11: Invalid Beluga program translated by Harpoon in an attempt to prove type
preservation when stepping into a (let E1 in E2)-expression. The highlighted segment of
line 11 incorrectly eliminates the Π-type for the assumption on the type of E1 being invariant
of the store type in order to substitute it in E2. This elimination of the Π-type requires a
separate lemma.

tiated metavariables because schemas in Beluga are not considered as lattices. That is,
without the notion of topological orderings of assumption blocks instantiated from context
schemas, the current implementation of context subsumption does not allow for topologically-
ordered subsets of assumptions to agree with other context schemas. This also implies that
assumptions unrelated to the output of a theorem may not be eliminated by the theorem
prover. In Harpoon, this has led to inconsistencies in the contextual objects of a theorem’s
output when it is stated using an auxiliary LF type with a unique constructor as opposed to
being stated in a straightforward fashion. The former statement of such a theorem is much
like that of those in Skolem normal form as featured in section 3.1, although there may not
be a need for explicit Π-types in the auxiliary LF constructor. Figure 13 illustrates how dif-
ferent results are obtained when stating the same theorem in the two forms. The distinction
worth noting between the two is that the straightforward statement of the theorem does not
explicitly flag the last judgment as an output. Performing inversion on the auxiliary LF
constructor emulates Twelf’s mode information for specifying judgments as outputs.

4.4 Variable cases reconstruction
Harpoon’s proof serialisation algorithm mishandles variable cases in the presence of alter-
nating assumptions schemas. When performing case analysis on a type in the presence of

12

1 rec functionality−kd−reg : (g : conbind)
2 [g, b : con, db : cn−of b K[..] ⊢ kd−wf K'[.., b]] ->
3 [g ⊢ cn−equiv C1 C2 K] -> [g ⊢ cn−of C1 K] ->
4 [g ⊢ kd−equiv K'[.., C1] K'[.., C2]] =
5 fn z => fn y => fn x =>
6 case z of
7 % ...
8 | [g, b, db ⊢ kd−wf/sigma Dwf1 (\a. \da. Dwf2)] =>
9 let [g ⊢ Dequiv1] =

10 functionality−kd−reg [g, b : con, db : cn−of b _ ⊢ Dwf1] y x in
11 let [g ⊢ Dequiv] = y in
12 let [g ⊢ Dof] = x in
13 let [g, x ⊢ Dequiv2] =
14 functionality−kd−reg
15 [g, x : block (a : con, da : cn−of a _),
16 b : con, db : cn−of b _ ⊢ Dwf2[.., b, db, x.1, _]]
17 [g, x : block (a : con, da : cn−of a _) ⊢ Dequiv[..]]
18 [g, x : block (a : con, da : cn−of a _) ⊢ Dof[..]] in
19 [g ⊢ kd−equiv/sigma Dequiv1 (\a. \da. Dequiv2[.., <a; da>])];

Figure 12: Invalid Beluga program translated by Harpoon in an attempt to prove
the functionality lemma for regular kinds, without specifying the invariant on the position of
contextual assumptions. The highlighted segment of line 16 incorrectly performs an exchange
on the order of type constructors in the context. In the presence of dependent kinds, this
swap is not sound as the context is no longer in a topological ordering because a’s kind may
depend on b. Hence, type reconstruction should fail to instantiate the hole from line 16. A
proof involving explicit contexts [2] should be provided instead.

context schema declaration, it is possible for that type to originate from the context. This
leads to the generation in Beluga of an additional case referred to as the variable case. Since
contextual assumptions are grouped together in sum types, then variable cases specifically
refer to type projections. As such, the current implementation of Harpoon uses the index
of the analysed type in the assumption block as naming scheme for variable cases. This leads
to naming conflicts whereby multiple branches of a proof share the same case identifier when
dealing with alternating assumptions schemas, in which case type reconstruction fails when
the meta-contexts are parsed and serialized in different orders. Errors raised by Harpoon
in the presence of variable cases include ill-type expression errors, internal errors and type

13

schema map−bind = some [B : etp, K : kind, Dmap : tmap K B, Dwf : ewf B]
block (x : eterm, dx : eof x B, a : con, da : cn−of a K, at : map a x);

proof map−wf : (g : map−bind) [g ⊢ kd−wf K] ->
[g ⊢ tmap K A] -> [g ⊢ ewf A] = % ...

LF map−wf'/e : etp -> type = map−wf'/i : ewf A -> map−wf'/e A;
proof map−wf' : (g : map−bind) [g ⊢ kd−wf K] ->
[g ⊢ tmap K A] -> [g ⊢ map−wf'/e A] = % ...

% Dwf : (g, a : con, da : cn−of a K[..] ⊢ kd−wf K'[.., a])
% Dtmap : (g, a : con, x : eterm, at : map a x ⊢ tmap K'[.., a] A[.., x])

by map−wf [g, b : block (
x : eterm, dx : eof x B[..], a : con, da : cn−of a K[..], at : map a x

) ⊢ Dwf[.., b.a, b.da]] [_, b ⊢ Dtmap[.., b.a, b.x, b.at]] as Dwf' unboxed
%{ => Dwf' : (g, b : block (

x : eterm, dx : eof x B[..], a : con, da : cn−of a K[..], at : map a x
) ⊢ ewf A[.., x]) }%

invert map−wf' [g, b : block (
x : eterm, dx : eof x B[..], a : con, da : cn−of a K[..], at : map a x

) ⊢ Dwf[.., b.a, b.da]] [_, b ⊢ Dtmap[.., b.a, b.x, b.at]]
% => Dwf' : (g, x : eterm, dx : eof x B[..] ⊢ ewf A[.., x])

Figure 13: Similar theorem statements with different output contextual objects. The state-
ment of map−wf' yields the same output’s context as found in the original mechanization,
whereas the statement of map−wf cannot be used in Harpoon without leaving uninstan-
tiated holes to eliminate the unnecessary assumptions a : con, da : cn−of a K[..] and
at : map a x from the output’s context. The invert tactic used on the output of map−wf'
performs a destructuring of the assumption block resulting from invoking the theorem, and
eliminates the assumptions therein that do not depend solely on x : eterm. This is because
the output judgment ewf : A[.., x] only depends on x and variables in g.

reconstruction errors, as well as uncaught exceptions, which warrants the need for a redesign
of the syntax for variable cases. It is also worth noting that parameter variable matching not
being implemented in the presence of more than one binder prevents some theorems from
being checked.

14

5 Conclusion
In conclusion, we have illustrated issues with both Beluga and Harpoon in develop-
ing proofs with first-class contexts. Beluga’s lack of support for existentially-quantified
metavariables has resulted in skolemised forms of theorems to be introduced in the mecha-
nization, which reduces its readability and maintainability. We also presented issues with
the current implementation of context subsumption in Beluga that prevent Harpoon
scripts from being verified, as well as inconsistencies between Harpoon’s internal proof syn-
tax and Beluga’s which prevents the proof scripts to be translated to Beluga programs.
These issues motivate halting progress on translating the mechanization of Standard ML
in Beluga until they are resolved.

References
[1] Andrew Cave and Brigitte Pientka. 2018. Mechanizing proofs with logical relations —

Kripke-style. Mathematical Structures in Computer Science 28, 9 (2018), 1606–1638.
https://doi.org/10.1017/S0960129518000154

[2] Karl Crary. 2009. Explicit Contexts in LF (Revised). http://www.cs.cmu.edu/~crary/
papers/2009/excon-rev.pdf

[3] Karl Crary. 2009. A Syntactic Account of Singleton Types via Hereditary Substitution.
, 21-29 pages. https://doi.org/10.1145/1577824.1577829

[4] Jacob Errington, Junyoung Clare Jang, and Brigitte Pientka. 2020. Mechanizing Meta-
Theory Interactively.

[5] Robert Harper, Furio Honsell, and Gordon Plotkin. 1993. A Framework for Defining
Logics. J. ACM 40, 1 (Jan. 1993), 143–184. https://doi.org/10.1145/138027.138060

[6] Robert Harper and Mark Lillibridge. 1994. A Type-Theoretic Approach to Higher-
Order Modules with Sharing. In Proceedings of the 21st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (Portland, Oregon, USA) (POPL
’94). Association for Computing Machinery, New York, NY, USA, 123–137. https:
//doi.org/10.1145/174675.176927

[7] Robert Harper and Christopher A. Stone. 2000. A Type-Theoretic Interpretation
of Standard ML. In Proof, Language, and Interaction: Essays in Honour of
Robin Milner. The MIT Press. https://doi.org/10.7551/mitpress/5641.003.0019
arXiv:https://direct.mit.edu/chapter-pdf/186174/9780262281676_cam.pdf

15

https://doi.org/10.1017/S0960129518000154
http://www.cs.cmu.edu/~crary/papers/2009/excon-rev.pdf
http://www.cs.cmu.edu/~crary/papers/2009/excon-rev.pdf
https://doi.org/10.1145/1577824.1577829
https://doi.org/10.1145/138027.138060
https://doi.org/10.1145/174675.176927
https://doi.org/10.1145/174675.176927
https://doi.org/10.7551/mitpress/5641.003.0019

[8] Gerwin Klein and Tobias Nipkow. 2006. A Machine-Checked Model for a Java-like
Language, Virtual Machine, and Compiler. ACM Trans. Program. Lang. Syst. 28, 4
(July 2006), 619–695. https://doi.org/10.1145/1146809.1146811

[9] Daniel K. Lee, Karl Crary, and Robert Harper. 2007. Towards a Mechanized Metatheory
of Standard ML. SIGPLAN Not. 42, 1 (Jan. 2007), 173–184. https://doi.org/10.
1145/1190215.1190245

[10] Robin Milner, Mads Tofte, and David Macqueen. 1997. The Definition of Standard ML.
MIT Press, Cambridge, MA, USA.

[11] Michael Norrish. 1998. C formalised in HOL.

[12] Scott Owens. 2008. A Sound Semantics for Camllight. In Proceedings of the Theory and
Practice of Software, 17th European Conference on Programming Languages and Systems
(Budapest, Hungary) (ESOP’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 1–
15.

[13] Frank Pfenning and Carsten Schürmann. 1999. System Description: Twelf — A
Meta-Logical Framework for Deductive Systems. In Automated Deduction — CADE-
16. Springer Berlin Heidelberg, Berlin, Heidelberg, 202–206.

[14] Frank Pfenning and Carsten Schürmann. 2002. Twelf User’s Guide. http://www.cs.
cmu.edu/~twelf/guide-1-4/twelf.pdf

[15] Brigitte Pientka. 2001. Termination and Reduction Checking for Higher-Order Logic
Programs. In Proceedings of the First International Joint Conference on Automated
Reasoning (IJCAR ’01). Springer-Verlag, Berlin, Heidelberg, 401–415.

[16] Brigitte Pientka and Joshua Dunfield. 2010. Beluga: A Framework for Programming
and Reasoning with Deductive Systems (System Description). In Automated Reasoning,
Jürgen Giesl and Reiner Hähnle (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
15–21. https://doi.org/10.1007/978-3-642-14203-1_2

[17] Brigitte Pientka and Ryan Kavanagh. 2014. A beginner’s guide to programming in
Beluga. http://complogic.cs.mcgill.ca/tutorial.pdf

[18] Christopher A. Stone and Robert Harper. 2000. Deciding Type Equivalence in a Lan-
guage with Singleton Kinds. In Proceedings of the 27th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (Boston, MA, USA) (POPL
’00). Association for Computing Machinery, New York, NY, USA, 214–227. https:
//doi.org/10.1145/325694.325724

16

https://doi.org/10.1145/1146809.1146811
https://doi.org/10.1145/1190215.1190245
https://doi.org/10.1145/1190215.1190245
http://www.cs.cmu.edu/~twelf/guide-1-4/twelf.pdf
http://www.cs.cmu.edu/~twelf/guide-1-4/twelf.pdf
https://doi.org/10.1007/978-3-642-14203-1_2
http://complogic.cs.mcgill.ca/tutorial.pdf
https://doi.org/10.1145/325694.325724
https://doi.org/10.1145/325694.325724

[19] Christopher A. Stone and Robert Harper. 2000. Singleton Kinds and Singleton Types.
Ph.D. Dissertation. Carnegie Mellon University, USA. AAI3002766.

[20] Christopher A. Stone and Robert Harper. 2006. Extensional Equivalence and Singleton
Types. ACM Transactions Compututational Logic 7, 4 (Oct. 2006), 676–722. https:
//doi.org/10.1145/1183278.1183281

17

https://doi.org/10.1145/1183278.1183281
https://doi.org/10.1145/1183278.1183281

A Syntax and semantics
This appendix features the syntax and semantics of the internal
language as presented in the original mechanization [9]. It is
not a research contribution, but is included for presentation
purposes.

A.1 Internal language syntax
C ::= constructors:

| α variable
| 〈〉 unit constructor
| 〈C1,C2〉 pairs
| π1C left projection
| π2C right projection
| λα:K.C abstraction
| C1 C2 application
| Unit unit type
| C1 × C2 products
| C1 → C2 functions
| C1 +C2 sums
| Ref C1 references
| Tag C1 generative tags
| Tagged tagged expressions
| µα:T.C recursive types

K ::= kinds:
| 1 unit kind
| T types
| S(C) singleton kind
| Πα:K.C dependent functions
| Σα:K.C dependent pairs

ℓ ::= . . . locations:
e ::= terms:

| x variables
| 〈〉 unit term
| 〈e1, e2〉 pairs
| π1e left projection
| π2e right projection
| fun x(y:C1):C2.e recursive function
| e1 e2 application
| inlCe left sum intro
| inrCe right sum intro
| case(e1, x.e2, y.e3) case
| loc ℓ locations
| ref e new reference
| !e dereference
| e1 := e2 assignment
| tagloc ℓ tag literal
| newtagC new tag
| tag(e1, e2) tag injection
| iftagof tag check

(e1, e2, x.e3, e4)
| raise e raise exception
| try(e1, x.e2) try/handle
| rollCe recursive type intro
| unroll e recursive type elim
| snd(M) module projection

M ::= modules:
| s variables
| 〈〉 unit module
| [e] term module
| [C] constructor module
| 〈M1,M2〉 pairs
| π1M left projection
| π2M right projection
| λ(s/αs:σ1) :> α2.M functor
| M1 M2 application
| M :> σ sealing
| let s/αs = M1 let binding

in(M2 :> σ)

18

A.2 Internal language static semantics
Γ ` K Kind well-formedness

Γ ` 1 Γ ` T

Γ ` C : T

Γ ` S(C)

Γ ` K′ Γ, α:K′ ` K′′ α /∈ Dom(Γ)

Γ ` Σα:K′.K′′

Γ ` K′ Γ, α:K′ ` K′′ α /∈ Dom(Γ)

Γ ` Πα:K′.K′′

Γ ` C : K Constructor well-formedness

α:K ∈ Γ

Γ ` α : K

s/αs:σ ∈ Γ

Γ ` αs : Fst(σ) Γ ` Unit : T

Γ ` Tagged : T

Γ ` C : T

Γ ` Ref C : T

Γ ` C : T

Γ ` Tag C : T

Γ ` C1 : T Γ ` C2 : T

Γ ` C1 × C2 : T

Γ ` C1 : T Γ ` C2 : T

Γ ` C1 → C2 : T

Γ ` C1 : T Γ ` C2 : T

Γ ` C1 +C2 : T

Γ, α:T ` C : T α /∈ Dom(Γ)

Γ ` µα:T.C : T Γ ` 〈〉 : 1

Γ ` C1 : K1 Γ ` C2 : K2

Γ ` 〈C1,C2〉 : K1 ×K2

Γ ` C : Σα:K′.K′′

Γ ` π1C : K′

Γ ` C : Σα:K′.K′′

Γ ` π2C : [π1C/α]K′′

Γ, α:K′ ` C : K′′ Γ ` K′ α /∈ Dom(Γ)

Γ ` λα:K′.C : Πα:K′.K′′

Γ ` C1 : Πα:K′.K′′ Γ ` C2 : K′

Γ ` C1 C2 : [C2/α]K′′
Γ ` C : T

Γ ` C : S(C)

Γ ` π1C : K1 Γ ` π2C : K2

Γ ` C : K1 ×K2

Γ ` C : Πα:K′.L Γ, α:K′ ` C α : K′′ α /∈ Dom(Γ)

Γ ` C : Πα:K′.K′′

Γ ` C : K′ Γ ` K′ ≤ K

Γ ` C : K

Γ ` C : K′ Γ ` K′ ≡ K

Γ ` C : K

Γ ` K1 ≡ K2 Kind equivalence

Γ ` 1 ≡ 1 Γ ` T ≡ T

Γ ` C1 ≡ C2 : T

Γ ` S(C1) ≡ S(C2)

Γ ` K′
1 ≡ K′

2 Γ, α:K′
1 ` K′′

1 ≡ K′′
2 α /∈ Dom(Γ)

Γ ` Σα:K′
1.K

′′
1 ≡ Σα:K′

2.K
′′
2

Γ ` K′
1 ≡ K′

2 Γ, α:K′
1 ` K′′

1 ≡ K′′
2 α /∈ Dom(Γ)

Γ ` Πα:K′
1.K

′′
1 ≡ Πα:K′

2.K
′′
2

Γ ` K1 ≤ K2 Subkinding

Γ ` 1 ≤ 1 Γ ` T ≤ T

Γ ` C1 ≡ C2 : T

Γ ` S(C1) ≤ S(C2)

Γ ` C : T

Γ ` S(C) ≤ T

Γ ` K′
1 ≤ K′

2 Γ, α:K′
1 ` K′′

1 ≤ K′′
2

Γ, α:K′
2 ` K′′

2 α /∈ Dom(Γ)

Γ ` Σα:K′
1.K

′′
1 ≤ Σα:K′

2.K
′′
2

Γ ` K′
2 ≤ K′

1 Γ, α:K′
2 ` K′′

1 ≤ K′′
2

Γ, α:K′
1 ` K′′

1 α /∈ Dom(Γ)

Γ ` Πα:K′
1.K

′′
1 ≤ Πα:K′

2.K
′′
2

B Core lemmas
This appendix presents some of the core lemmas involved in
proving type preservation for terms of the internal language
[9]. It is not a research contribution, but is included for pre-
sentation purposes.

B.1 Validity
Theorem 1 (Functionality for kinds). If Γ, α:K ` K′, and
Γ ` C1 ≡ C2 : K, and Γ ` C1 : K and Γ ` C2 : K, then
Γ ` [C1/α]K′ ≡ [C2/α]K′.

Theorem 2 (Validity for constructors and kinds).

1. If Γ ` C : K, then Γ ` K.

2. If Γ ` C1 ≡ C2 : K, then Γ ` C1 : K, and Γ ` C2 : K,
and Γ ` K.

3. If Γ ` K1 ≡ K2, then Γ ` K1 and Γ ` K2.

4. If Γ ` K1 ≤ K2, then Γ ` K1 and Γ ` K2.

B.2 Injectivity
Theorem 3 (Injectivity of simple product types). If Γ ` C1×
C2 ≡ C′

1×C′
2 : T, then Γ ` C1 ≡ C′

1 : T and Γ ` C2 ≡ C′
2 : T.

Theorem 4 (Injectivity of simple arrow types). If Γ ` C1 →
C2 ≡ C′

1 → C′
2 : T, then Γ ` C1 ≡ C′

1 : T and Γ ` C2 ≡ C′
2 :

T.

19

Theorem 5 (Injectivity of simple sum types). If Γ ` C1 +
C2 ≡ C′

1+C′
2 : T, then Γ ` C1 ≡ C′

1 : T and Γ ` C2 ≡ C′
2 : T.

Theorem 6 (Injectivity of simple reference types). If Γ `
ref C ≡ ref C′ : T, then Γ ` C ≡ C′ : T.

Theorem 7 (Injectivity of simple tag types). If Γ ` tag C ≡
tag C′ : T, then Γ ` C ≡ C′ : T.

B.3 Type presevation
Theorem 8 (Monotonicity for terms). If Γ; (Υ,Θ) ` e : C
and ℓ /∈ Dom(Υ), then Γ; ((Υ, ℓ:C′),Θ) ` e : C. Further, if
Γ; (Υ,Θ) ` e : C and ℓ /∈ Dom(Θ), then Γ; (Υ, (Θ, ℓ:C′)) ` e :

C.

Theorem 9 (Preservation for terms). If (e, S) 7→ (e′, S′), and
·; Φ ` e : C, and Φ ` S : Φ, then there exists some extension
Φ′ of Φ such that ·; Φ′ ` e′ : C and Φ′ ` S′ : Φ′.

20

	Introduction
	Overview of the mechanization
	Structure of the mechanization
	Translation progress

	Verification with Beluga
	Mode information
	Context schemas overhaul
	Complete induction

	Correctness of Harpoon sessions
	Non-exhaustive case analyses
	Inconsistencies with Beluga programs
	Uninstantiated holes
	Variable cases reconstruction

	Conclusion
	Syntax and semantics
	Internal language syntax
	Internal language static semantics

	Core lemmas
	Validity
	Injectivity
	Type presevation

